Abstract
The properties of group III-Nitrides (III-N) such as a large direct bandgap, high melting point, and high breakdown voltage make them very attractive for optoelectronic applications. However, conventional epitaxy on SiC and sapphire substrates results in strained and defective films with consequently poor device performance. In this work, by studying the nucleation of GaN on graphene/SiC by MOVPE, we unambiguously demonstrate the possibility of remote van der Waals epitaxy. By choosing the appropriate growth conditions, GaN crystals can grow either in-plane misoriented or fully epitaxial to the substrate. The adhesion forces across the GaN and graphene interface are very weak and the micron-scale nuclei can be easily moved around. The combined use of x-ray diffraction and transmission electron microscopy demonstrate the growth of stress-free and dislocation-free crystals. The high quality of the crystals was further confirmed by photoluminescence measurements. First principles calculations additionally highlighted the importance of the polarity of the underlying substrate. This work lays the first brick towards the synthesis of high quality III-N thin films grown via van der Waals epitaxy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.