Abstract

Miniaturization of active implantable medical devices is currently compromised by the available means for electrically powering them. Most common energy supply techniques for implants – batteries and inductive couplers – comprise bulky parts which, in most cases, are significantly larger than the circuitry they feed. Here, for overcoming such miniaturization bottleneck in the case of implants for electrical stimulation, it is proposed to make those implants act as rectifiers of high frequency bursts supplied by remote electrodes. In this way, low frequency currents will be generated locally around the implant and these low frequency currents will perform stimulation of excitable tissues whereas the high frequency currents will cause only innocuous heating. The present study numerically demonstrates that low frequency currents capable of stimulation can be produced by a miniature device behaving as a diode when high frequency currents, neither capable of thermal damage nor of stimulation, flow through the tissue where the device is implanted. Moreover, experimental evidence is provided by an in vivo proof of concept model consisting of an anesthetized earthworm in which a commercial diode was implanted. With currently available microelectronic techniques, very thin stimulation capsules (diameter <500 µm) deliverable by injection are easily conceivable.

Highlights

  • Miniaturization of implantable smart devices for diagnosis and therapeutics is currently compromised by the available means for supplying those devices with electrical energy

  • The first BION devices had a length of about 16 mm and a diameter of 2 mm and were energized solely by inductive coupling with an external large coil fed by high currents; later devices (BION 3 ABC) have a length of 27 mm and a diameter of 3.3 mm and contain a rechargeable battery that is charged by means of inductive coupling [3]

  • Experimental evidence is reported from an in vivo proof of concept model consisting of an anesthetized earthworm in which a commercial diode was implanted

Read more

Summary

Introduction

Miniaturization of implantable smart devices for diagnosis and therapeutics is currently compromised by the available means for supplying those devices with electrical energy. Some ingenious energy harvesting techniques are under research [1], electrochemical batteries and inductive coupling systems are found in the vast majority of implantable electronic devices; and these two electricity sources comprise bulky parts which, in most cases, are significantly larger than the microelectronic circuitry they feed. In 1991, Loeb et al introduced a novel paradigm for Functional Electrical Stimulation (FES): they conceived and developed devices for electrical stimulation of excitable tissues that were small enough for being delivered by injection [2]. These devices, later known by the commercial name BION [3], were intended for solving some major constraints of existing techniques for performing multi-site stimulation. To date, these are the smallest implantable systems with some sort of medical functionality based on electricity

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call