Abstract

The recent emergence of advanced information technologies such as cloud computing, artificial intelligence, and data science has improved and optimized various processes in acoustics with potential real-world applications. Noise monitoring tasks on large terrains can be captured using an array of sound level meters. However, current monitoring systems only rely on the knowledge of a singular measured value related to the acoustic energy of the captured signal, leaving aside spatial aspects that complement the perception of noise by the human being. This project presents a system that performs binaural measurements according to subjective human perception. The acoustic characterization in an anechoic chamber is presented, as well as acoustic indicators obtained in the field initially for a short period of time. The main contribution of this work is the construction of a binaural prototype that resembles the human head and which transmits and processes acoustical data on the cloud. The above allows noise level monitoring via binaural hearing rather than a singular capturing device. Likewise, it can be highlighted that the system allows for obtaining spatial acoustic indicators based on the interaural cross-correlation function (IACF), as well as detecting the location of the source on the azimuthal plane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call