Abstract

The effects of local and remote wind forcing of water level heights in the Virginia Coast Reserve (VCR) are examined in order to determine the significant forces governing estuarine motions over subtidal time scales. Recent (1996–2008) data from tide and wind stations in the lagoon, a tide station to the north at Sandy Hook, NJ, and one offshore wind station at the Chesapeake Light Tower are examined. Sea surface height spectrum calculations reveal significant diurnal and semidiurnal tidal effects along with subtidal variations, but a suppressed inertial signal. Sea-surface heights (SSH) with 2–5 day periods at Wachapreague, VA are coherent with those at Sandy Hook and lag them in time, suggesting that southward-propagating continental shelf waves provide subtidal variability within the lagoon. The coherence between lagoon winds and sea surface height, as well as between winds and cross-lagoon sea height gradient, were significant at a relatively small number of frequency and wind direction combinations. The frequencies at which this wind forcing occurs are the tidal and subtidal bands present to the north, so that lagoon winds selectively augment existing SSH signals, but do not generate them. The impact of the wind direction is closely related to the geometry of the lagoon and bounding landmasses. The effect of wind stress is also constrained by geometry in affecting the cross-lagoon water height gradient. Water levels at subtidal frequencies are likely forced by a combination of local wind forcing, remote wind forcing and oceanic forcing modified by the complex topography of the lagoon, shelf, and barrier islands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.