Abstract

AbstractRecently, there has been increasing interest in remote heating of polymer nanocomposites for applications such as actuators, microfluidic valves, drug delivery devices, and hyperthermia treatment of cancer. In this study, magnetic hydrogel nanocomposites of poly(ethylene glycol) (PEG) with varying amounts of iron oxide nanoparticle loadings were synthesized. The nanocomposites were remotely heated using an alternating magnetic field (AMF) at three different AMF amplitudes, and the resultant temperatures were recorded. The rate of the temperature rise and the steady state temperatures were analyzed with a heat transfer model, and a correlation of heat generation per unit mass with the nanoparticle loadings was established for different AMF amplitudes. The temperature rise data of a PEG system with different swelling properties were found to be accurately predicted by the model. Furthermore, the correlations were used to simulate the temperatures of the nanocomposite and the surrounding tissue for potential hyperthermia cancer treatment applications. © 2010 American Institute of Chemical Engineers AIChE J, 2011

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.