Abstract
An animal model of depression combining genetic vulnerability and early-life stress (ELS) was prepared by submitting the Flinders Sensitive Line (FSL) rats to a standard paradigm of maternal separation. We analysed hippocampal synaptic transmission and plasticity in vivo and ionotropic receptors for glutamate in FSL rats, in their controls Flinders Resistant Line (FRL) rats, and in both lines subjected to ELS. A strong inhibition of long-term potentiation (LTP) and lower synaptic expression of NR1 subunit of the NMDA receptor were found in FSL rats. Remarkably, ELS induced a remodelling of synaptic plasticity only in FSL rats, reducing inhibition of LTP; this was accompanied by marked increase of synaptic NR1 subunit and GluR2/3 subunits of AMPA receptors. Chronic treatment with escitalopram inhibited LTP in FRL rats, but this effect was attenuated by prior ELS. The present results suggest that early gene-environment interactions cause lifelong synaptic changes affecting functional and molecular aspects of plasticity, partly reversed by antidepressant treatments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Neuropsychopharmacology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.