Abstract

An extraordinary degree of condensation is required to fit the eukaryotic genome inside the nucleus. This compaction is attained by first coiling the DNA around structures called nucleosomes. Mammalian genomes are further folded into sophisticated three-dimensional (3D) configurations, enabling the genetic code to dictate a diverse range of cell fates. Recent advances in molecular and computational technologies have enabled the query of higher-order chromatin architecture at an unprecedented resolution and scale. In T lymphocytes, similar to other developmental programs, the hierarchical genome organization is shaped by a highly coordinated division of labor among different classes of sequence-specific transcription factors. In this review, we will summarize the general principles of 1D and 3D genome organization, introduce the common experimental and computational techniques to measure the multilayer chromatin organization, and discuss the pervasive role of transcription factors on chromatin organization in T lymphocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.