Abstract

Peripheral nerve injury (PNI) induces severe functional loss in extremities. Progressive denervation and atrophy occur in the muscles if the nerve repair is delayed for long periods of the time. To overcome these difficulties, detailed mechanisms should be determined for neuromuscular junction (NMJ) degeneration in target muscles after PNI and regeneration after nerve repair. We established two models of end-to-end neurorrhaphy and allogeneic nerve grafting in the chronic phase after common peroneal nerve injury in female mice (n = 100 in total). We evaluated motor function, histology, and gene expression in the target muscles during their regeneration processes and compared the models. We found that the functional recovery with allogeneic nerve grafting was superior to that with end-to-end neurorrhaphy, and the number of reinnervated NMJs and Schwann cells was increased at 12 weeks after allograft. In addition, NMJ- and Schwann cell-related molecules showed high expression in the target muscle in the allograft model. These results suggest that Schwann cell migrating from the allograft might play a crucial role in nerve regeneration in the chronic phase after PNI. The relationship between the NMJ and Schwann cells should be further investigated in the target muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call