Abstract

The aim of this study was to determine whether aerobic exercise (AE) in old age contributes to improving the morphologies of myelinated fibers (MFs) in peripheral nerves as well as capillaries. Furthermore, we investigated whether such processes are associated with complementary activity of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in the circulating blood and peripheral nerve tissue. Fourteen male Wistar rats (age: 95 wk) were randomly divided into moderate AE ( n = 8) and sedentary (SED; n = 6) groups. Rats in the AE group performed treadmill running for 1 h per day for 2 wk, following which the bilateral tibial nerves of the two groups were removed to examine MF and capillary structure. Levels of BDNF and VEGF in the serum and peripheral nerves were analyzed via enzyme-linked immunosorbent assay. Myelin thickness, axon diameter, and capillary luminal diameter were significantly larger in the AE group than in the SED group ( P < 0.0001). Levels of serum BDNF and VEGF were significantly lower and higher, respectively, in the AE group than in the SED group ( P < 0.001). Conversely, BDNF and VEGF levels in tibial nerve tissue were significantly higher, respectively, and lower in the AE group than in the SED group ( P < 0.001). In conclusion, our study indicates that regular AE induces enlargement of the capillaries and thickens the myelin in aged peripheral nerves, likely via a complementary process involving BDNF and VEGF. NEW & NOTEWORTHY Accumulating evidence indicates that age-related sarcopenia is accompanied by the degeneration of myelinated fibers (MFs) in peripheral nerves. Our study indicates that regular aerobic exercise contributes to increased thickness of the myelin surrounding MFs and enlargement of the capillaries, likely via a complementary process involving brain-derived neurotrophic factor and vascular endothelial growth factor. Our findings demonstrate that regular, moderate-intensity aerobic exercise may help to prevent and reverse peripheral nerve regression in older adults.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call