Abstract

BackgroundOrganelle remodeling processes are evolutionarily conserved and involved in cell functions during development, aging, and cell death. Some endogenous and exogenous molecules can modulate these processes. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, has mainly been considered as a modulator of plasma membrane fluidity in brain development and aging, while DHA’s role in organelle remodeling in specific neural cell types at the ultrastructural level remains largely unexplored. DHA is notably incorporated into dynamic organelles named lipid bodies (LBs). We hypothesized that DHA could attenuate the inflammatory response in lipopolysaccharide (LPS)-activated microglia by remodeling LBs and altering their functional interplay with mitochondria and other associated organelles.ResultsWe used electron microscopy to analyze at high spatial resolution organelle changes in N9 microglial cells exposed to the proinflammogen LPS, with or without DHA supplementation. Our results revealed that DHA reverses several effects of LPS in organelles. In particular, a large number of very small and grouped LBs was exclusively found in microglial cells exposed to DHA. In contrast, LBs in LPS-stimulated cells in the absence of DHA were sparse and large. LBs formed in the presence of DHA were generally electron-dense, suggesting DHA incorporation into these organelles. The accumulation of LBs in microglial cells from mouse and human was confirmed in situ. In addition, DHA induced numerous contacts between LBs and mitochondria and reversed the frequent disruption of mitochondrial integrity observed upon LPS stimulation. Dilation of the endoplasmic reticulum lumen was also infrequent following DHA treatment, suggesting that DHA reduces oxidative stress and protein misfolding. Lipidomic analysis in N9 microglial cells treated with DHA revealed an increase in phosphatidylserine, indicating the role of this phospholipid in normalization and maintenance of physiological membrane functions. This finding was supported by a marked reduction of microglial filopodia and endosome number and significant reduction of LPS-induced phagocytosis.ConclusionsDHA attenuates the inflammatory response in LPS-stimulated microglial cells by remodeling LBs and altering their interplay with mitochondria and other associated organelles. Our findings point towards a mechanism by which omega-3 DHA participates in organelle reorganization and contributes to the maintenance of neural cell homeostasis.Electronic supplementary materialThe online version of this article (doi:10.1186/s12974-016-0580-0) contains supplementary material, which is available to authorized users.

Highlights

  • Organelle remodeling processes are evolutionarily conserved and involved in cell functions during development, aging, and cell death

  • Our working hypothesis was that Docosahexaenoic acid (DHA) attenuates the inflammatory response in LPS-stimulated microglial cells, through the remodeling of lipid bodies (LBs) and their interplay with mitochondria and other associated organelles

  • Two types of LBs were encountered across our experimental conditions: lipid vacuoles delimited by a bilayer and recognized by their irregular contours and heterogeneous contents, as well as lipid “droplets” or bodies delimited by a monolayer and characterized by their small size, the roundness of their profiles, and the uniformity of their lipid contents [40, 41]

Read more

Summary

Introduction

Organelle remodeling processes are evolutionarily conserved and involved in cell functions during development, aging, and cell death. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, has mainly been considered as a modulator of plasma membrane fluidity in brain development and aging, while DHA’s role in organelle remodeling in specific neural cell types at the ultrastructural level remains largely unexplored. We hypothesized that DHA could attenuate the inflammatory response in lipopolysaccharide (LPS)-activated microglia by remodeling LBs and altering their functional interplay with mitochondria and other associated organelles. A recent meta-analysis in human suggests that DHA, alone or combined with another member of omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA), contributes to improving memory function in older adults with mild memory complaints [12]. We hypothesize that DHA-induced organelle remodeling in microglia activated by the proinflammogen lipopolysaccharide (LPS) contributes to the preservation of microglial cellular functions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call