Abstract
The present study investigates the remodeling of gap junctional organization in relation to changes in anisotropic conduction properties in hypertrophied right ventricles (RVs) of rats with monocrotaline (MCT)-induced pulmonary hypertension. In contrast to controls that showed immunolocalization of connexin43 (Cx43) labeling largely confined to the intercalated disks, RV myocytes from MCT-treated rats showed dispersion of Cx43 labeling over the entire cell surface. The disorganization of Cx43 labeling became more pronounced with the progression of hypertrophy. Desmoplakin remained localized to the intercalated disks, as in controls. In RV tissues, the proportion of Cx43 label at the intercalated disk progressively decreased. Quantitative analysis of en face views of intercalated disks revealed a significant decrease in the disk gap junctional density in RV tissues of MCT-treated rats (control, 0.18 versus MCT-treated, 0.14 at 2 weeks; control, 0.16 versus MCT-treated, 0.11 at 4 weeks). Conduction velocity in RVs parallel to the fiber orientation was significantly lower (30.2% [n=9]) in MCT-treated rats at 4 weeks than in control rats, whereas there was no significant difference observed in the conduction velocity across the fiber orientation between control and MCT-treated rats. The anisotropic ratio of MCT-treated rats (1.38+/-0.10) was significantly lower than that of control rats (1.98+/-0.12). These results suggest that RV hypertrophy induced by pressure overload is associated with both disorganization of gap junction distribution and alteration of anisotropic conduction properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.