Abstract

Flow patterns and shear forces in native coronary arteries are more protective against neointimal hyperplasia than those in femoral arteries. Yet, the caliber mismatch with their target arteries makes coronary artery bypass grafts more likely to encounter intimal hyperplasia than their infrainguinal counterparts due to the resultant slow flow velocity and decreased wall stress. To allow a site-specific, flow-related comparison of remodeling behavior, saphenous vein bypass grafts were simultaneously implanted in femoral and coronary positions. Saphenous vein grafts were concomitantly implanted as coronary and femoral bypass grafts using a senescent nonhuman primate model. Duplex ultrasound-based blood flow velocity profiles and vein graft and target artery dimensions were correlated with dimensional and histomorphologic graft remodeling in large, senescent Chacma baboons (n = 8; 28.1 ± 4.9 kg) during a 24-week period. At implantation, the cross-sectional quotient (Q(c)) between target arteries and vein grafts was 0.62 ± 0.10 for femoral grafts vs 0.17 ± 0.06 for coronary grafts, resulting in a dimensional graft-to-artery mismatch 3.6 times higher (P < .0001) in coronary grafts. Together with different velocity profiles, these site-specific dimensional discrepancies resulted in a 57.9% ± 19.4% lower maximum flow velocity (P = .0048), 48.1% ± 23.6% lower maximal cycling wall shear stress (P = .012), and 62.2% ± 21.2% lower mean velocity (P = .007) in coronary grafts. After 24 weeks, the luminal diameter of all coronary grafts had contracted by 63%, from an inner diameter of 4.49 ± 0.60 to 1.68 ± 0.63 mm (P < .0001; subintimal diameter: -41.5%; P = .002), whereas 57% of the femoral interposition grafts had dilated by 31%, from 4.21 ± 0.25 to 5.53 ± 1.30 mm (P = .020). Neointimal tissue was 2.3 times thicker in coronary than in femoral grafts (561 ± 73 vs 240 ± 149 μm; P = .001). Overall, the luminal area of coronary grafts was an average of 4.1 times smaller than that of femoral grafts. Although coronary and infrainguinal bypass surgery uses saphenous veins as conduits, they undergo significantly different remodeling processes in these two anatomic positions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.