Abstract

Recently, multimodal interfaces are incorporating smell as an additional means of interaction. Devices called olfactory displays have been designed to improve applications with various objectives, such as notifying or alerting through scents, increasing immersion in virtual or augmented reality applications, or learning and enhancement of mental functions. Based on the potential of olfactory memory to evoke memories and emotions to benefit health and well-being, we propose ReminiScentia as an olfactory display to generate and deliver scents. This work presents an evaluation of the effectiveness of ReminiScentia in evoking brain responses similar to those generated by manually delivered scents. To achieve this, we monitored the hemodynamic responses during manual and ReminiScentia olfactory stimulation over the prefrontal cortex (PFC) by using a functional near-infrared spectroscopy (fNIRS) device in 33 healthy subjects. Among the results, it was found that when ReminiScentia was used to deliver the olfactory stimuli, there is no statistically significant difference in the magnitude of concentration changes of OxyHb in the PFC between manual deliver and ReminiScentia (Wilcoxon: p > 0.05). The effectiveness of the use of ReminiScentia has allowed us not only its application for the evocation of memories in a multisensory therapy but also to propose an olfactory interaction design space where olfactory stimuli are used to provide feedback or instructions in multisensory stimulation activities that could support the training of higher mental functions such as memory and learning in patients with cognitive disabilities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call