Abstract

Our views of remineralization and nutrient cycling in coastal marine ecosystems have changed considerably over the last 30 years. The major trend has been an increasing appreciation for the complexity of processes involved, including some marked changes in our assessment of the importance of bacteria with respect to smaller animals and in our perception of the association between bacteria and particulate matter in the sea. Among the more recent developments in this area is a growing awareness of the importance of the coupling between benthic and pelagic communities in coastal waters. There appears to be a strong linear correlation between the organic matter produced in the overlying water and the amount of organic matter consumed on the bottom in almost all of the coastal environments for which annual data are available. The large amount of organic matter consumed by the benthos (perhaps 25–50 percent of that produced) is associated with a large flux of inorganic nutrients from the sediments to the overlying water. The stoichiometry of net benthic nutrient regeneration differs from that of pelagic regeneration, however, and simple Redfield type models probably cannot be applied. The amount of fixed inorganic nitrogen returned to the water across the sediment-water interface appears to be about half of that expected on the basis of the flux of phosphorus. This behavior, along with the fact that an appreciable amount of organic matter in coastal waters gets remineralized on the bottom, contributes to the low N/P ratio that is characteristic of these areas and may be responsible for the observation that nitrogen is commonly the nutrient most limiting for primary production. Recent direct measurements of the flux of dissolved N2 across the sediment-water interface indicate that denitrification is probably responsible for the loss of fixed nitrogen during decomposition in the sediments. If this is a widespread phenomenon, estuaries, bays, and other coastal waters may be major sinks in the marine nitrogen cycle and important terms in the global nitrogen budget. However, the fact that eutrophication appears to be an increasing problem in many estuaries is dramatic warning that anthropogenic nutrient inputs can overwhelm the recycling and remineralization processes in coastal waters.KeywordsCoastal WaterSalt MarshNutrient CyclingOverlie WaterNutrient BudgetThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.