Abstract
Tumor necrosis factor (TNF) and the TNF receptor (TNFR) superfamily play very important roles for cell death as well as normal immune regulation. Previous studies have strongly suggested that c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in ischemic brain injury. The purpose of this investigation was to examine the protective effect of remifentanil preconditioning in cerebral ischemia/reperfusion injury (CIR) and its possible molecular mechanism. Results showed that Remifentanil pretreatment significantly decreased the CD4(+) and increased the CD8(+) in cerebral tissues. Additionally, CD4(+)/CD8(+) in CIR+Remifentanil group was markedly lower than that in CIR group. TNF-α and TNFR1 in CIR+Remifentanil group rats was found to be significant lower than that in CIR group rats. The expression levels of Cyt-c, caspase-3, caspase-9 and pJNK proteins in brain of CIR+Remifentanil group rats were found to significantly decreased compared to CIR group rats. In addition, decreased ROS level indirectly inhibit JNK activation and cell death in CIR rat receiving Remifentanil preconditioning. From current experiment results, at least two signal pathways involve into the process of Remifentanil preconditioning inhibiting cerebral damage induced by ischemia reperfusion. The inhibitory effects of Remifentanil preconditioning on the brain damage are achieved probably through blocking the activation of TNF-α/TNFR1, JNK signal transduction pathways, which implies that Remifentanil preconditioning may be a potential and effective way for prevention of the ischemic/reperfusion injury through the suppression extrinsic apoptotic signal pathway induced by TNF-α/TNFR1, JNK signal pathways. Taken together, this study indicated that regulation of the TNF-α/TNFR1 and JNK signal pathways may provide a new therapy for cerebral damage induced by ischemia and reperfusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.