Abstract

BackgroundMyocardial injury caused by myocardial ischemia (MI) is still a severe condition that can result in apoptosis, oxidative stress, and inflammation. Remifentanil is a selective, ultra-short-acting, µ-opioid receptor agonist opioid. It can improve sinusoidal heart rate patterns in the fetus, for bupivacaine-induced cardiotoxicity, and with lipopolysaccharide (LPS)-induced cardiomyocytes injuries. This study aimed to explore the cardioprotective effects of remifentanil in MI model rats.MethodsSprague Dawley (SD) rats were split into five groups at random, including a control group, Isop group, low-dose remifentanil treatment group (10 µg/kg), medium-dose remifentanil treatment group (20 µg/kg), and a high-dose remifentanil treatment group (40 µg/kg). The MI model was achieved by subcutaneously injecting rats with isoproterenol (85 mg/kg) for two consecutive days. With the expression of apoptotic molecules, myocardial systolic function index, inflammation, antioxidant enzymes, and the myocardial enzyme taken into account, the data was analyzed.ResultsAfter treatment with remifentanil, the left ventricular wall thickness (LVWT), left ventricular end-systolic volume (LVESV), left ventricular ejection fraction (LVEF), fraction shortening (FS), and heart rate (HR) were significantly increased in comparison with the Isop group. Creatine kinase-MB (CK-MB), Mb, and cTnl expressions were decreased. Meanwhile, the levels of cleaved caspase-3 and caspase-9 were decreased. Remarkably, the levels of reactive oxidative species (ROS), malondialdehyde (MDA), and lactate dehydrogenase (LDH) were observed to be repressed, while the levels of superoxide dismutase (SOD) was significantly increased. More importantly, the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and interferon (IFN)-γ were decreased.ConclusionsRemifentanil has significant potential as a therapeutic intervention strategy for ameliorating myocardial injury after MI and these findings provide the rationale for further clinical studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.