Abstract
Hydrophobic organic compounds (HOCs) in e-waste disposal sites are difficult to remove effectively. There is little reported about zero valent iron (ZVI) coupled with persulfate (PS) to achieve the removal of decabromodiphenyl ether (BDE209) from soil. In this work, we have prepared the flake submicron zero valent iron by ball milling with boric acid (B-mZVIbm) at a low cost. Sacrifice experiments results showed that 56.6% of BDE209 was removed in 72 h with PS/B-mZVIbm, which was 2.12 times than that of micron zero valent iron (mZVI). The morphology, crystal form, atomic valence, composition, and functional group of B-mZVIbm were determined by SEM, XRD, XPS, and FTIR, and the results indicated that the oxide layer on the surface of mZVI is replaced by borides. The results of EPR indicated that hydroxyl radical and sulfate radical played the dominant role in the degradation of BDE209. The degradation products of BDE209 were determined by gas chromatography-mass spectrometry (GC-MS), accordingly, the possible degradation pathway was further proposed. The research suggested that ball milling with mZVI and boric acid is a low-cost means of preparing highly active zero valent iron materials. And the mZVIbm has promising applications in improving the activation efficiency of PS and enhancing the removal of the contaminant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.