Abstract

Contamination by arsenic (As) and nitrate (NO3−) in groundwater attributed to anthropogenic activities and natural biogeochemical reactions has been considered as severe threats to human society and aquatic ecosystems. Current techniques for removing those contaminants are limited by high cost but low efficiency, leading to a lower economic value. In this work, as advanced alternative of heterogeneous crystalline iron materials, low-cost Fe78Si9B13 metallic glass (MG) with mature production by melt spinning is employed in real industrial contaminated water by investigating effective separation of As and reduction of NO3−. Fe-based MG demonstrates attractively high removal rate of As in 30 min with low soluble Fe concentration (1.5 mg L−1), which is ascribed to synergistic effect of reduction/adsorption by MG, precipitation of arsenic sulfide and adsorption of generated iron sulfide. On the other hand, remarkable sustainability up to 20 reused times of Fe-based MG for NO3− reduction suggests promising economic value in industrial applications. Surface area normalized rate coefficient indicates superior catalytic capacity of Fe-based MG compared with other iron materials. With simultaneous investigation of removing As and NO3−, this work aims to assess applicability of Fe-based MG in practical applications and to provide a novel clue of extending their multifunction in future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.