Abstract

Microbial induced phosphate precipitation (MIPP) is an advanced bioremediation technology to reduce the mobility and bioavailability of heavy metals (HMs), but the high level of HMs would inhibit the growth of phosphate solubilizing microbes. This study proposed a new combination system for the remediation of multiple HMs contaminated acidic mine soil, which included hydroxyapatite (HAP) and Phanerochaete chrysosporium (P. chrysosporium, PC) that had high phosphate solubilizing ability and HMs tolerance. Experimental data suggested that in HAP/PC treatment after 35 d of remediation, labile Cr, Zn and As could be transformed into the stable fraction with the maximum immobilization efficiencies increased by 53.01 %, 22.43 %, and 35.65 %, respectively. The secretion of organic acids by P. chrysosporium was proved to promote the dissolution of HAP. Besides, the pH value, available phosphorus (AP) and organic matter (OM) increased in treated soil than in original soil, which also indicated the related dissolution-precipitation mechanism of HMs immobilization. Additionally, characterization results revealed that adsorption and ion exchange also played an important role in the remediation process. The overall results suggested that applying P. chrysosporium coupled with HAP could be considered as an efficient strategy for the remediation of multiple HMs contaminated mine soil and laid a foundation for the future exploration of soil microenvironment response during the remediation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call