Abstract

Excessive copper (Cu) in contaminated soil and groundwater has attracted continuous attentions due to the bioaccumulation and durability. In this study, the feasibility of remediation of heavy metal pollution in soil and groundwater was investigated using hydroxyapatite/calcium silicate hydrate (HAP/C-S-H) recovered from phosphorus-rich wastewater in farmland. The results show that the pH has a strong effect on copper removal from Cu-contaminated groundwater but the impact of ion strength on the removal is weak. In general, high pH and low ion strength give better results in copper removal. Kinetic and isotherm data from the study fit well with Pseudo-second-order kinetic model and Langmuir isotherm model, respectively. The maximum adsorption capacity of HAP/C-S-H (138mg/g) was higher than that of C-S-H (90.3mg/g) when pH value, temperature, and ionic strength were 5, 308K, and 0.01M, respectively. Thermodynamics results indicate that Cu removal is a spontaneous and endothermic process. X-ray diffraction (XRD) results show that the mechanism of copper removal involves physical adsorption, chemical precipitation and ion exchange. For the remediation of Cu-contaminated soil, 76.3% of leachable copper was immobilized by HAP/C-S-H after 28d. Acid soluble Cu, the main contributor to biotoxicity, decreased significantly while reducible and residual Cu increased. After immobilization, the acid neutralization capacity of the soil increased and the dissolution of copper was substantially reduced in near-neutral pH. It can be concluded that HAP/C-S-H is an effective, low-cost and eco-friendly reagent for in-situ remediation of heavy metal polluted soil and groundwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.