Abstract

A permeable reactive barrier (PRB) was installed in the Shoalhaven Floodplain about 100 km south of Sydney (Australia), where acidic groundwater generation from pyritic soil poses a severe environmental and socioeconomic problem. Recycled concrete aggregates were a promising source of alkalinity-generating material and adopted as the reactive media for this PRB. The current study simulates the performance of the PRB through coupling geochemical reactions involved with recycled concrete and acidic groundwater with geohydraulics (transient groundwater flows). This is the first such attempt made for time-dependent modelling and performance verification of a PRB located in acid sulfate soil (ASS) terrain. The developed model describes the chemical clogging due to mineral precipitates and the associated reductions in porosity and hydraulic conductivity of the reactive medium. The governing equations of the model were incorporated into commercial software, MODFLOW and RT3D. The field results are in favourable agreement with the model predictions, confirming that the reduction in hydraulic conductivity due to mineral precipitation occurs predominantly at the entrance zone of the PRB and insignificantly in the middle and exit zones after 7 years of operation. Mineralogical analysis undertaken on sample specimens from the PRB also confirms that clogging is minimal at the entrance zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.