Abstract

Trace metal pollution in soils is one of the universal environmental problems in the world. Phytoremediation is a green, safe, ecological, and economic method to achieve continuous reduction of soil pollutants. Turfgrass is a plant with great landscape value and has considerable biomass when used for remediation of trace metal contaminated soil. However, its remediation ability needs to be improved in future application. The combined application of turfgrass, citric acid (CA) and auxin (gibberellin, GA3) were applied in the phytoremediation of an artificial nutritive soil derived from sludge, and a field scale orthogonal experiment (L9) was conducted to understand the interaction effect and obtain the optimum phytoremediation. Experimental results showed that the types and cultural patterns of turfgrass mainly determined plant height, root length and trace metal concentration in turfgrass, however CA treatment was prone to increase the aboveground biomass and the concentrations of most trace metals in turfgrasses, especially the concentration of Ni in turfgrass. GA3 spraying significantly increased the concentration of Cd in turfgrass. The culture patterns of turfgrass played 42.4% influence on acid-extractable Cd, while CA applying had 53.8% influence on the acid-extractable Ni. The annual phytoextraction amount of trace metals based on five mowing a year were proposed to assess the remediation ability of treatments, which of the combination treatment (T3, intercropping Zoysia matrella and Lolium perenne, and applying 400 mg kg−1 CA and 30 mg kg−1 GA3) were 1.6–2.1 times higher CK group. This research provides technical reference for intercropping turfgrass for remediation of trace metals in sludge-derived nutritive soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call