Abstract

The remediation of cadmium (Cd)-contaminated soil has gained much attention recently because Cd in soil threatens human health through the food chain. Although tremendous progress has been made in the remediation of Cd-contaminated soil in rice acid soil system, the mechanism and effects of Cd-contaminated soil remediation under these amendments in wheat weak alkaline soil are still limited. In this study, the remediation effect and related mechanism of Cd in weakly alkaline soil were carried out using zeolite, diatomite, and sodium bentonite as the main remediation components, supplemented by calcium dihydrogen phosphate and fulvic acid. The results of field experiments showed that the concentration of Cd reduced by 27.3 ~ 31.2% in rhizosphere soil and 34.3 ~ 54.2% in non-rhizosphere soil, and the maximum reduction rate of Cd concentration in wheat grain was 25.5%. The main factors affecting the concentration of Cd in wheat grains include the change in exchangeable Cd, the absorption capacity of wheat root, and the inhibitory effect on Cd transport from stem to grain in this paper. In general, this work provides a new potential management feasible pathway to alleviate the Cd toxicity of weakly alkaline soil and wheat grain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call