Abstract

Biochar has potential for application for in situ metal-contaminated sediment remediation, mainly because of its cost-effectiveness. In this study, the effectiveness of Phyllostachys pubescens (PP) biochar for immobilization of cadmium (Cd) chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) by decreasing the bioavailable fraction was investigated using a series of laboratory sediment remediation microcosms. The results demonstrated that biochar could significantly reduce the bioavailable fraction of metals (except for Cr) by diffusive gradients in thin film (DGT) measurement in porewater. Additionally, amended sediment treated with 15% w/w biochar resulted in 79.71%, 73.20%, 54.86%, 49.75%, 31.16% and 0.99% reductions in the acid-soluble fraction for Cu, Pb, Ni, Zn, Cd, and Cr, respectively. Similarly, bioaccumulation of metals (except for Cr) by Limnodrilus hoffmeisteri was reduced by 18.45%–59.15% in biochar amended sediment. PP biochar at 15% could also reduce the inhibition or lethality rate by 37.5%, 18.1% and 36.3% for Chlorella vulgaris, Daphnia magna and luminescent bacteria Vibrio qinghaiensis, respectively. Overall, these results demonstrate the potential for biochar application for in situ sediment remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.