Abstract

The paper presents a study on the validity of perturbation methods, suchas the method of multiple scales, the Lindstedt–Poincare method and soon, in seeking for the periodic motions of the delayed dynamic systemsthrough an example of a Duffing oscillator with delayed velocityfeedback. An important observation in the paper is that the method ofmultiple scales, which has been widely used in nonlinear dynamics, worksonly for the approximate solutions of the first two orders, and givesrise to a paradox for the third-order approximate solutions of delaydifferential equations. The same problem appears when theLindstedt–Poincare method is implemented to find the third-orderapproximation of periodic solutions for delay differential equations,though it is effective in seeking for any order approximation ofperiodic solutions for nonlinear ordinary differential equations. Apossible explanation to the paradox is given by the results obtained byusing the method of harmonic balance. The paper also indicates thatthese perturbation methods, despite of some shortcomings, are stilleffective in analyzing the dynamics of a delayed dynamic system sincethe approximate solutions of the first two orders already enable one togain an insight into the primary dynamics of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.