Abstract
Given the non-canonical relationship between variables used in the Hamiltonian formulations of the Einstein-Hilbert action (due to Pirani, Schild, Skinner (PSS) and Dirac) and the Arnowitt-Deser-Misner (ADM) action, and the consequent difference in the gauge transformations generated by the first-class constraints of these two formulations, the assumption that the Lagrangians from which they were derived are equivalent leads to an apparent contradiction that has been called “the non-canonicity puzzle”. In this work we shall investigate the group properties of two symmetries derived for the Einstein-Hilbert action: diffeomorphism, which follows from the PSS and Dirac formulations, and the one that arises from the ADM formulation. We demonstrate that unlike the diffeomorphism transformations, the ADM transformations (as well as others, which can be constructed for the Einstein-Hilbert Lagrangian using Noether’s identities) do not form a group. This makes diffeomorphism transformations unique (the term “canonical” symmetry might be suggested). If the two Lagrangians are to be called equivalent, canonical symmetry must be preserved. The interplay between general covariance and the canonicity of the variables used is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.