Abstract

The symmetric quantum Rabi model (QRM) is integrable due to a discrete -symmetry of the Hamiltonian. This symmetry is generated by a known involution operator, measuring the parity of the eigenfunctions. An experimentally relevant modification of the QRM, the asymmetric (or biased) quantum Rabi model (AQRM) is no longer invariant under this operator, but shows nevertheless characteristic degeneracies of its spectrum for half-integer values of ϵ, the parameter governing the asymmetry. In an interesting recent work (J. Phys. A: Math. Theor. 54 12LT01), an operator has been identified which commutes with the Hamiltonian H ϵ of the AQRM for and appears to be the analogue of the parity in the symmetric case. We prove several important properties of this operator, notably, that it is algebraically independent of the Hamiltonian H ϵ and that it essentially generates the commutant of H ϵ . Then, the expected -symmetry manifests the fact that the commuting operator can be captured in the two-fold cover of the algebra generated by H ϵ , that is, the polynomial ring in H ϵ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.