Abstract
This paper is motivated by the concept of nonnegative signed domination that was introduced by Huang, Li, and Feng in 2013 [15]. We study the non-negative signed domination problem from the theoretical point of view. For networks modeled by strongly chordal graphs and distance-hereditary graphs, we show that the non-negative signed domination problem can be solved in polynomial time. For networks modeled by bipartite planar graphs and doubly chordal graphs, however, we show that the decision problem corresponding to the non-negative signed domination problem is NP-complete. Furthermore, we show that even when restricted to bipartite planar graphs or doubly chordal graphs, the non-negative signed domination problem is not fixed parameter tractable .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.