Abstract

We survey some results related to classical secret sharing schemes defined in Shamir [10] and Blakley [1], and developed in Brickell [2] and Lai and Ding [4]. Using elementary symmetric polynomials, we describe in a unified way which allocations of identities to participants define Shamir's threshold scheme, or its generalization by Lai and Ding, with a secret placed as a fixed coefficient of the scheme polynomial. This characterization enabled proving in Schinzel et al. [8], [9] and Spiez et al. [13] some new and non-trivial properties of such schemes. Also a characterization of matrices corresponding to the threshold secret sharing schemes of Blakley and Brickell's type is given. Using Gaussian elimination we provide an algorithm to construct all such matrices which is efficient in the case of relatively small matrices. The algorithm may be useful in constructing systems where dynamics is important (one may generate new identities using it). It can also be used to construct all possible MDS codes. MSC: primary 94A62; secondary 11T71; 11C20

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.