Abstract

Periodic and stable sensory input can result in rhythmic and stable neural responses, a phenomenon commonly referred to as neural entrainment. Although the use of neural entrainment to investigate the regularities the brain tracks has increased in recent years, the methods used for its quantification are not well-defined in the literature. Here we argue that some strategies used in previous papers, are inadequate for the study of steady-state response, and lead to methodological artefacts. The aim of this commentary is to discuss these articles and to propose alternative measures of neural entrainment. Specifically, we applied four possible alternatives and two epoching approaches reported in the literature to quantify neural entrainment on simulated datasets. Our results demonstrate that overlapping epochs, as used in the original Batterink and colleagues articles, inevitably lead to a methodological artefact at the frequency corresponding to the overlap. We therefore strongly discourage this approach and encourage the re-analysis of data based on overlapping epochs. Additionally, we argue that the use of time–frequency decomposition to compute phase coherence at low frequencies to reveal neural entrainment is not optimal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call