Abstract

With the rapid growth in the penetration rate of mobile devices and the surge in demand for mobile data services, small cells and mobile backhaul networks have become the critical focus of next-generation mobile network development. Backhaul requirements within current wireless networks are almost asymmetrical, with most traffic flowing from the core to the handset, but 5G networks will require more symmetrical backhaul capability. The deployment of small cells and the placement of transceivers for cellular phones are crucial in trading off the symmetric backhaul capability and cost-effectiveness. The deployment of small cells is related to the placement of transceivers for cellular phones. Chang, Kloks, and Lee transformed the placement problem into the maximum-clique transversal problem on graphs. From the theoretical point of view, our paper considers the parameterized complexity of variations of the maximum-clique transversal problem for split graphs, doubly chordal graphs, planar graphs, and graphs of bounded treewidth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.