Abstract

Let T be a bounded linear operator on a complex Hilbert space and n,m ? N. Then T is said to be n-normal if T+Tn = TnT+ and (n,m)-normal if T+mTn = TnT+m. In this paper, we study several properties of n-normal, (n,m)-normal operators. In particular, we prove that if T is 2-normal with ?(T) ? (-?(T)) ? {0}, then T is polarloid. Moreover, we study subscalarity of n-normal operators. Also, we prove that if T is (n,m)-normal, then T is decomposable and Weyl?s theorem holds for f (T), where f is an analytic function on ?(T) which is not constant on each of the components of its domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.