Abstract

Mitsui and Ohshima (2008) criticized the power-stroke model for muscle contraction and proposed a new model. In the new model, about 41% of the myosin heads are bound to actin filaments, and each bound head forms a complex MA3 with three actin molecules A1, A2 and A3 forming the crossbridge. The complex translates along the actin filament cooperating with each other. The new model well explained the experimental data on the steady filament sliding. As an extension of the study, the isometric tension transient and isotonic velocity transient are investigated. Statistical ensemble of crossbridges is introduced, and variation of the binding probability of myosin head to A1 is considered. When the binding probability to A1 is zero, the Hill-type force-velocity relation is resulted in. When the binding probability to A1 becomes finite, the deviation from the Hill-type force-velocity relation takes place, as observed by Edman (1988). The characteristics of the isometric tension transient observed by Ford, Huxley and Simmons (1977) and of the isotonic velocity transient observed by Civan and Podolsky (1966) are theoretically reproduced. Ratios of the extensibility are estimated as 0.22 for the crossbridge, 0.26 for the myosin filament and 0.52 for the actin filament, in consistency with the values determined by X-ray diffraction by Wakabayashi et al. (1994).

Highlights

  • In 1999, Mitsui [1] criticized the power-stroke model on the muscle contraction mechanism and proposed a new model

  • In 2008, Mitsui and Ohshima [2] refined the new model and discussed the steady filament sliding in detail demonstrating that the calculation results were in good agreement with experimental observations

  • It is proposed that about 41% of the myosin heads are bound to actin filament and each bound head forms complex MA3 with three actin molecules

Read more

Summary

Introduction

In 1999, Mitsui [1] criticized the power-stroke model on the muscle contraction mechanism and proposed a new model. In 2008, Mitsui and Ohshima [2] refined the new model and discussed the steady filament sliding in detail demonstrating that the calculation results were in good agreement with experimental observations They outlined the discussion on the isometric tension transient and the isotonic velocity transient given in [1] by citing some calculation results.

Deviation from the Hill-Type Force-Velocity Relation
Definition of Crossbridge Shortening Y
Statistical Ensemble of Crossbridges and Crossbridge Binding Probability
Isometric Tension Transient
Isotonic Velocity Transient
Deviation from Hill-Type Force-Velocity Relation
Findings
Summary and Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.