Abstract
We derive some restrictions on the topology of a monotone Lagrangian submanifold $L\subset\mathbf{C}^n$ by making observations about the topology of the moduli space of Maslov 2 holomorphic discs with boundary on $L$ and then using Damian's theorem which gives conditions under which the evaluation map from this moduli space to $L$ has nonzero degree. In particular we prove that an orientable 3-manifold admits a monotone Lagrangian embedding in $\mathbf{C}^3$ only if it is a product, which is a variation on a theorem of Fukaya. Finally we prove an h-principle for monotone Lagrangian immersions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.