Abstract

In the microchannel-emulsification approach for producing nano-/subnano-liter droplets, the external energy input into the droplet accounts for the variation of the droplet surface free energy during its growth on the terrace. Avoiding the demand for an infinite energy input is the mechanism responsible for the experimental observation that there is always some remaining dispersed liquid on the terrace after generation of one droplet. A better empirical relation exists for correlating the experimental data of the droplet size in the literature. Based on a balance of the surface tension and the drag force, we have also developed a simple scaling model for predicting the size of droplets fabricated in microfluidic T-junctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.