Abstract

We investigate the effect of meson loops on the spectrum of quark states. We demonstrate that in general quark states do not tend to get very broad if their coupling to the continuum increases, but instead they decouple from the latter in the large coupling limit. We ascribe this effect to the essentially nonperturbative unitarization procedure involved. In the meantime, some quark resonances behave very differently and demonstrate collectivity in the sense that their pole trajectories span a wide, as compared to the level spacing, region therefore acquiring contributions from multiple bare poles rather than from the closest neighbors. While the actual calculations are done within particular, very simplified models, it is argued that the findings might well be general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call