Abstract

It is proved that whenever X and Y are completely regular μ-spaces of pointwise countable type and the spaces Cp(X) and Cp(Y) of real-valued continuous functions on X and Y, respectively, endowed with the topology of pointwise convergence, are linearly homeomorphic, the X is locally compact iff Y is locally compact. This extends the McCoy and Ntantu result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.