Abstract
Tarski asked whether the arithmetic identities taught in high school are complete for showing all arithmetic equations valid for the natural numbers. The answer to this question for the language of arithmetic expressions using a constant for the number one and the operations of product and exponentiation is affirmative, and the complete equational theory also characterises isomorphism in the typed lambda calculus, where the constant for one and the operations of product and exponentiation respectively correspond to the unit type and the product and arrow type constructors. This paper studies isomorphisms in typed lambda calculi with empty and sum types from this viewpoint. Our main contribution is to show that a family of so-called Wilkie–Gurevič identities, that plays a pivotal role in the study of Tarski’s high school algebra problem, arises from type-theoretic isomorphisms. We thus close an open problem by establishing that the theory of type isomorphisms in the presence of product, arrow, and sum types (with or without the unit type) is not finitely axiomatisable. Further, we observe that for type theories with arrow, empty and sum types the correspondence between isomorphism and arithmetic equality generally breaks down, but that it still holds in some particular cases including that of type isomorphism with the empty type and equality with zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.