Abstract

If A is a bounded linear operator on an infinite-dimensional complex Hilbert space H, let lat A denote the collection of all subspaces of H that are invariant under A; i.e., all closed linear subspaces M such that x ∈ M implies (Ax) ∈ M. There is very little known about the question: which families F of subspaces are invariant subspace lattices in the sense that they satisfy F = lat A for some A? (See [5] for a summary of most of what is known in answer to this question.) Clearly, if F is an invariant subspace lattice, then {0} ∈ F, H ∈ F and F is closed under arbitrary intersections and spans. Thus, every invariant subspace lattice is a complete lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.