Abstract

We investigate the properties of three entanglement measures that quantify the statistical distinguishability of a given state with the closest disentangled state that has the same reductions as the primary state. In particular, we concentrate on the relative entropy of entanglement with reversed entries. We show that this quantity is an entanglement monotone which is strongly additive, thereby demonstrating that monotonicity under local quantum operations and strong additivity are compatible in principle. In accordance with the presented statistical interpretation which is provided, this entanglement monotone, however, has the property that it diverges on pure states, with the consequence that it cannot distinguish the degree of entanglement of different pure states. We also prove that the relative entropy of entanglement with respect to the set of disentangled states that have identical reductions to the primary state is an entanglement monotone. We finally investigate the trace-norm measure and demonstrate that it is also a proper entanglement monotone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.