Abstract
We present an approach to Jacobi and contact geometry that makes many facts, presented in the literature in an overcomplicated way, much more natural and clear. The key concepts are Kirillov manifolds and linear Kirillov structures, i.e., homogeneous Poisson manifolds and, respectively, homogeneous linear Poisson manifolds. The difference with the existing literature is that the homogeneity of the Poisson structure is related to a principal ${\rm GL}(1,{\mathbb R})$-bundle structure on the manifold and not just to a vector field. This allows for working with Jacobi bundle structures on nontrivial line bundles and drastically simplifies the picture of Jacobi and contact geometry. Our results easily reduce to various basic theorems of Jacobi and contact geometry when the principal bundle structure is trivial, while giving new insights into the theory.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.