Abstract

Lowering the overpotentials to drive the oxygen evolution reaction (OER) during the water-splitting process is the bottleneck process and holds the key to achieving cost-effective and efficient electrolysis infrastructure systems. Given this, here we report the first demonstration of utilizing a catalyst derived from lead vanadate (PVO) for alkaline electrolysis systems with record low overpotentials. The synthesis route was regulated to yield a two-dimensional (2-D) PVO structure with uniform coatings on the Ni electrode. The optimized PVO demonstrated impressively low overpotentials of 146 mV vs RHE for OER at a current density of 10 mAcm−2. The excellent OER performance was attributed to the 3D structures assembled from porous 2D PVO that promotes a facile ionic transport and accelerates electron transfer in OER electrochemical process. Importantly, the proposed approach will open a new window for possible exploitation and practical utilization of ternary vanadium oxides in alkaline electrolysis in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call