Abstract
To enhance the photocatalytic performance of titanium dioxide, the structures of both bulk and surface were modified. Doping of sulfur atoms to be substituted for lattice oxygen atoms of titanium dioxide was carried out to extend the light absorption by atmosphere-controlled pulsed laser deposition, which allows direct preparation of impurity-included thin film such as sulfur-doped titanium dioxide. On the other hand, to enhance the surface catalytic reaction, nickel nanoparticles were deposited at the thin film substrate by chemical vapor reductive deposition method, which is a novel preparation technique of metallic nanoparticles on the substrate surface. Obtained sulfur-doped titanium dioxide was found to possess sensitivity to visible light with the wavelength up to 550nm, indicating the photocatalytic activity in visible region. Sulfur doping induced the dye degradation activity under visible light irradiation. When nickel nanoparticles were deposited, a remarkable enhancement of the hydrogen evolution activity through ethanol decomposition of more than 20 times as much as unmodified titanium dioxide thin film was accomplished. In addition, the stability of sulfur atom doped into titanium dioxide structure was investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.