Abstract
Reasonable design of bimetallic nanomaterials with support is beneficial to improve catalytic performance. This work reports a new kind of sodium sesquicarbonate-supporting Fe2O3@Pt via etching Fe3O4@Pt@SiO2, which exhibits highly efficient and stable catalytic reduction performance towards 4-NP. Sodium sesquicarbonate-supporting Fe2O3@Pt has an interconnected one-dimensional network structure that provides sufficient channels for mass transfer. At the same time, a large amount of Fe2O3@Pt is exposed on its surface, which hinders the aggregation of pt clusters and Fe2O3 nanoparticles, and facilitates the direct contact of Fe2O3@Pt reaction sites with reactant molecules, thus improving the catalytic rate of 4-NP reduction reaction. Moreover, the introduction of non-metallic Fe can not only reduce the consumption of precious metal Pt, but also improve the catalytic efficiency due to the synergistic effect. This study opens up a new avenue to develop robust catalysts for heterogeneous catalytic reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.