Abstract

We compare the morphological and structural features of SiGe membranes fabricated by three different processes: direct deposition of Si0.5Ge0.5 on Si(001) nominal substrate, direct deposition of Si0.5Ge0.5 on silicon on insulator, and deposition of SiGe with low Ge concentration on silicon on insulator followed by Ge enrichment by condensation. We show that the formation of fully strained Ge-rich layers free of defects with a flat surface is possible only by the two-step epitaxy–condensation process. We demonstrate that the condensation-based process enables the total inhibition of the morphological instability, together with the hindering of dislocations for critical thickness much greater than those commonly obtained by direct deposition. Those behaviors could be explained by the injection of self-interstitials in the Ge-rich layers during condensation. Such remarkable properties could be generalized to many other systems using a similar condensation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.