Abstract
Sn-Ge mixed perovskites have been proposed as promising lead-free candidates in the photovoltaics (PV) field. In this work, we discovered a stable P1 phase Sn-Ge mixed structure (CsSn0.5Ge0.5I3) with an appropriate band gap value of 1.19 eV, which manifests its unique structural stability and physics properties. The thermodynamic stability of this mixed structure under different growth conditions and all possible native defects are depicted in detail. The formation energies and dominant native point defects indicate that P1 phase CsSn0.5Ge0.5I3 exhibits unipolar self-doping behavior (p-type conductivity) and good defect tolerance while the growth condition changes. In addition, the calculation of light absorption confirmed that the P1 phase has a higher light absorption coefficient than that of MAPbI3 in the visible light range, showing excellent light absorption. Our work not only provides theoretical guidance for unraveling the unusual structural stability of Sn-Ge mixed perovskites, but also offers a useful scheme to modulate the stability and optoelectronic properties of Ge-based perovskites through alloy engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.