Abstract

BackgroundSoils polluted with animal charcoal from skin and hide cottage industries harbour extremely toxic and carcinogenic hydrocarbon pollutants and thus require a bio-based eco-friendly strategy for their depuration. The effects of carbon-free mineral medium (CFMM) amendment on hydrocarbon degradation and microbial community structure and function in an animal charcoal-polluted soil was monitored for 6 weeks in field moist microcosms consisting of CFMM-treated soil (FN4) and an untreated control (FN1). Hydrocarbon degradation was monitored using gas chromatography-flame ionization detector (GC-FID), and changes in microbial community structure were monitored using Kraken, while functional annotation of putative open reading frames (ORFs) was done using KEGG KofamKOALA and NCBI’s conserved domain database (CDD). ResultsGas chromatographic analysis of hydrocarbon fractions revealed the removal of 84.02% and 82.38% aliphatic and 70.09% and 70.14% aromatic fractions in FN4 and FN1 microcosms in 42 days. Shotgun metagenomic analysis of the two metagenomes revealed a remarkable shift in the microbial community structure. In the FN4 metagenome, 92.97% of the population belong to the phylum Firmicutes and its dominant representative genera Anoxybacillus (64.58%), Bacillus (21.47%) and Solibacillus (2.39%). In untreated FN1 metagenome, the phyla Proteobacteria (56.12%), Actinobacteria (23.79%) and Firmicutes (11.20%), and the genera Xanthobacter (9.73%), Rhizobium (7.49%) and Corynebacterium (7.35%), were preponderant. Functional annotation of putative ORFs from the two metagenomes revealed the detection of degradation genes for aromatic hydrocarbons, benzoate, xylene, chlorocyclohexane/chlorobenzene, toluene and several others in FN1 metagenome. In the FN4 metagenome, only seven hydrocarbon degradation genes were detected. ConclusionThis study revealed that though CFMM amendment slightly increases the rate of hydrocarbon degradation, it negatively impacts the structural and functional properties of the animal charcoal-polluted soil. It also revealed that intrinsic bioremediation of the polluted soil could be enhanced via addition of water and aeration.

Highlights

  • Soils polluted with animal charcoal from skin and hide cottage industries harbour extremely toxic and carcinogenic hydrocarbon pollutants and require a bio-based eco-friendly strategy for their depuration

  • Sampling site description and soil microcosm setup Composite animal charcoal-polluted soil samples were collected at an abattoir located in Ilorin, Kwara State, Nigeria

  • The second soil microcosm designated FN4 contain 1 kg of sieved soil amended with 100 ml carbon-free mineral medium (CFMM; g L−1: NH4NO3, 3.0 g; Na2HPO4, 2.2 g; KH2PO4,0.8 g; MgSO4·7H2O, 0.1 g; FeCl3·6H2O, 0.05 g; and CaCl2·2H2O, 0.05 g; pH 7.0)

Read more

Summary

Introduction

Soils polluted with animal charcoal from skin and hide cottage industries harbour extremely toxic and carcinogenic hydrocarbon pollutants and require a bio-based eco-friendly strategy for their depuration. The process involved often includes the use of kerosene, diesel, spent engine oil, plastics and old tyre as fuel [1] It is poorly regulated and characterized by indiscriminate disposal of wastes, which are rich in animal charcoal laced with various types of hydrocarbons, including aliphatics, aromatics, polycyclic aromatic hydrocarbons (PAHs), dioxins, furans, benzenes and heavy metals [2, 3]. These wastes eventually find their way into surrounding soils, underground waters, runoffs and surface waters. Since these sites are usually located around abattoirs and water canals or small streams, it is doubtless that this process could pose serious hazards to the ecosystem [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call