Abstract

To evaluate the binding characteristics of [(3)H]Ro15-4513 with the central benzodiazepine (BZ) receptor, inhibition experiments of [(3)H]Ro15-1788 and [(3)H]Ro15-4513 were performed both in vitro and in vivo, using two BZ ligands, flunitrazepam (FNP), and ethyl-β-carboline-3-carboxylate (β-CCE). FNP inhibited the binding of [(3)H]Ro15-1788 and [(3)H]Ro15-4513 in a dose-dependent manner in the mouse cerebral cortex, hippocampus, and cerebellum, both in vitro and in vivo. β-CCE also inhibited the binding of [(3)H]Ro15-1788 and [(3)H]Ro15-4513 in all the aforementioned brain regions in vitro. However, in vivo, β-CCE inhibited the binding of [(3)H]Ro15-4513 in the cerebral cortex and cerebellum, but not in the hippocampus, even at an injected dose of up to 1mg/kg. In contrast, more than 50% of the in vivo binding of [(3)H]Ro15-1788 was inhibited by 1 mg/kg of β-CCE in all regions. The time-activity curve of [(3)H]Ro15-4513 in the hippocampus also showed no alteration of the peak uptake between the control group and 0.3 mg/kg of β-CCE coinjected group. These results indicated that the binding characteristics of [(3)H]Ro15-4513 with the BZ receptor differed markedly between the in vitro and in vivo condition, and the selectivity of [(3)H]Ro15-4513 binding to α5 subtype of BZ receptor in the mouse brain seemed to be remarkable under the in vivo condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call