Abstract

Long dinucleotide repeats found in exons present a substantial mutational hazard: mutations at these loci occur often and generate frameshifts. Here, we provide clear and compelling evidence that exonic dinucleotides experience strong selective constraint. In humans, only 18 exonic dinucleotides have repeat lengths greater than six, which contrasts sharply with the genome-wide distribution of dinucleotides. We genotyped each of these dinucleotides in 200 humans from eight 1000 Genomes Project populations and found a near-absence of polymorphism. More remarkably, divergence data demonstrate that repeat lengths have been conserved across the primate phylogeny in spite of what is likely considerable mutational pressure. Coalescent simulations show that even a very low mutation rate at these loci fails to explain the anomalous patterns of polymorphism and divergence. Our data support two related selective constraints on the evolution of exonic dinucleotides: a short-term intolerance for any change to repeat length and a long-term prevention of increases to repeat length. In general, our results implicate purifying selection as the force that eliminates new, deleterious mutants at exonic dinucleotides. We briefly discuss the evolution of the longest exonic dinucleotide in the human genome--a 10 x CA repeat in fibroblast growth factor receptor-like 1 (FGFRL1)--that should possess a considerably greater mutation rate than any other exonic dinucleotide and therefore generate a large number of deleterious variants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.