Abstract

DNA damage and cell survival was assessed in the marine bacteria, Photobacterium angustum (GC%=39.6) and Sphingopyxis alaskensis (GC%=65.5) following UVB irradiation and recovery in the presence or absence of visible light. The extent of bipyrimidine photoproduct formation was analyzed by HPLC-MS/MS. S. alaskensis was chosen as a reference species since it was previously shown to be photoresistant. Interestingly, P. angustum exhibited an even higher level of survival to UVB irradiation than S. alaskensis. This higher photoresistance was associated with a decrease in the rate of formation of cyclobutane pyrimidine dimers (CPDs) at high UVB doses. Despite different distributions in UVB-induced lesions, the survival difference between the two marine bacteria could not be accounted for by qualitative differences in either photoreactivation or the rate of nucleotide excision repair of the photoproducts arising from the different bipyrimidine doublets (TT, CT, TC and CC). Dark repair was found to be much more efficient for P. angustum than S. alaskensis but the corresponding rate of photoproduct removal was lower than that observed at high UVB doses. We propose that the increased resistance of P. angustum under high UVB doses results from a UVB-induction of CPD photolyase(s) that may directly repair DNA damage and/or act indirectly by enhancing the rate of nucleotide excision repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.